Time limit: 0.25s Memory limit: 1G

Brandon likes Fibonacci numbers. For the purposes of this problem, the Fibonacci sequence is defined as the sequence of integers f_i , where $f_1 = f_2 = 1$, and $f_i = f_{i-1} + f_{i-2}$ for $i \ge 3$.

One day, Brandon writes down the sequence f starting with f_1 , except that because he does not have good arbitraryprecision arithmetics available to him, he ends up writing down the values of f_i modulo M. He wants to know the Nth digit he writes down for several different values of N.

Constraints

 $2 \leq M \leq 10^4$

 $1 \leq N_i \leq 10^{18}$

 $1 \leq Q \leq 10^6$

Input Specification

The first line contains two positive integers, M and Q.

The next Q lines each contain a single positive integer, $N_{i\cdot}$

Output Specification

Output Q lines. On the *i*th line, output the N_i th digit that Brandon wrote down.

Sample Input 1

10 11		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		

1			
1			
2			
- 2			
5			
5			
8			
3			
1			
4			
5			
9			
-			

Sample Input 2

100 11			
1			
2			
2			
3			
4			
5			
6			
2			
/			
8			
9			
10			
11			
11			

Sample Output 2

1			
1			
2			
3			
5			
8			
1			
3			
2			
1			
3			
			J