Time limit: 0.4s **Memory limit:** 512M Java: 2.0s

You are given a graph with N vertices and M edges. Each edge is a directed edge from vertex u_i to vertex v_i with weight w_i . You are asked to find the shortest path between all pairs of vertices. The graph may contain multiple edges between any pair of vertices, as well as self-loops. There may also be negative edge weights. It is not guaranteed that the graph is connected.

Constraints

For all subtasks:

 $0 \leq M \leq 4\,000$

 $1 \leq u_i, v_i \leq N$

Subtask 1 [10%]

 $1 \leq N \leq 300$

 $-10^9 \leq w_i \leq 10^9$

Subtask 2 [10%]

 $1 \leq N \leq 1\,000$

 $1 \leq w_i \leq 10^9$

Subtask 3 [80%]

 $1 \leq N \leq 1\,000$

 $-10^9 \leq w_i \leq 10^9$

Input Specification

The first line contains 2 integers N and M, subject to the constraints above.

The next M lines describe the edges of the graph. Each line contains 3 integers, u_i , v_i , w_i , indicating a directed edge from vertex u_i to vertex v_i with weight w_i , subject to the constraints above.

Output Specification

This problem is graded with an identical checker. This includes whitespace characters. Ensure that every line of output is terminated with a \n character.

The output consists of N lines, each with N space separated integers. Each line should end with a new line character. Integer j on line i contains the distance of the shortest path from vertex i to vertex j.

If there is no path from i to j, INF should be printed instead of an integer.

If there is no lower bound on the length of the shortest path from i to j (or equivalently, there is a path from i to j that contains a negative edge cycle), \neg INF should be printed instead of an integer.

A negative edge cycle is a path that starts and ends on the same vertex, and the sum of the weights of those edges on that path is less than 0.

Sample Input 1

- 1	
	5 4
	1 2 9
	1 4 8
	2 4 2
	3 5 4
	5 5 4

Sample Output 1

0 9 INF 8 INF INF 0 INF 2 INF INF INF 0 INF 4 INF INF INF 0 INF INF INF INF 0

Sample Input 2

66			
122			
134			
2 3 -10			
351			
562			
65-5			

Sample Output 2

0 2 -8 INF -INF -INF INF 0 -10 INF -INF -INF INF INF 0 INF -INF -INF INF INF INF 0 INF INF INF INF INF INF -INF -INF INF INF INF INF -INF -INF