CCO '03 P4 - Constrained Permutations

Time limit: 1.0s Memory limit: 16M

Canadian Computing Competition: 2003 Stage 2, Day 2, Problem 1

A *permutation* on the numbers 1, 2, ..., n is a linear ordering of the numbers. For example, there are 6 permutations of the numbers 1, 2, 3. They are 123, 132, 213, 231, 312 and 321. Another way to think of it is removing n disks numbered 1 to n from a bag (without replacement) and recording the order in which they were drawn out.

Mathematicians (and other smart people) write down that there are $n! = n \times (n-1) \dots 3 \times 2 \times 1$ permutations of the numbers $1, \dots, n$. We call this "*n* factorial."

For this problem, you will be given an integer n $(1 \le n \le 9)$ and a series of k $(k \ge 0)$ constraints on the ordering of the numbers. That is, you will be given k pairs (x, y) indicating that x must come before y in the permutation.

You are to output the number of permutations which satisfy all constraints.

Input Specification

Your input will be k + 2 lines. The first line will contain the number n. The second line will contain the integer k, indicating the number of constraints. The remaining k lines will be pairs of distinct integers which are in the range $1, \ldots, n$.

Output Specification

Your output will be one integer, indicating the number of permutations of $1, \ldots, n$ which satisfy the k constraints.

Sample Input 1

3		
2		
1 2		
2 3		

Sample Output 1

1

Sample Input 2

2 1 2 2 1	4			
	2			
2 1	1 2			
	2 1			

Sample Output 2

0

Sample Input 3

4			
2			
1 2			
2 3			

Sample Output 3

4