Time limit: 0.16s Memory limit: 32M

A matrix is a rectangular table of letters. A square matrix is a matrix with an equal number of rows and columns. A square matrix M is called **symmetric** if its letters are symmetric with respect to the main diagonal ($M_{ij} = M_{ji}$ for all pairs of i and j).

The following figure shows two symmetric matrices and one which is not symmetric:

AAB	AAA
ACC	ABA
BCC	AAA

Two symmetric matrices.

ABCD	AAB
ABCD	ACA
ABCD	DAA
ABCD	

Two matrices that are not symmetric.

Given a collection of available letters, you are to output **a subset of columns in the lexicographically smallest symmetric** matrix which can be composed using **all** the letters.

If no such matrix exists, output IMPOSSIBLE.

To determine if matrix A is lexicographically smaller than matrix B, consider their elements in row major order (as if you concatenated all rows to form a long string). If the first element in which the matrices differ is smaller in A, then A is lexicographically smaller than B.

Input Specification

The first line of input contains two integers N ($1 \le N \le 30\,000$) and K ($1 \le K \le 26$). N is the dimension of the matrix, while K is the number of distinct letters that will appear.

Each of the following K lines contains an uppercase letter and a positive integer, separated by a space. The integer denotes how many corresponding letters are to be used. For example, if a line says A3, then the letter A must appear three times in the output matrix.

The total number of letters will be exactly N^2 . No letter will appear more than once in the input. The next line contains an integer P ($1 \le P \le 50$), the number of columns that must be output. The last line contains P integers, the indices

of columns that must be output. The indices will be between 1 and N inclusive, given in increasing order and without duplicates.

Output Specification

If it is possible to compose a symmetric matrix from the given collection of letters, output the required columns on N lines, each containing P character, without spaces. Otherwise, output **IMPOSSIBLE**.

Scoring

In test cases worth 60% of points, N will be at most 300. In test cases worth 80% of points, N will be at most 3000.

Sample Input 1

3 3			
A 3			
B 2			
C 4			
3			
123			

Sample Output 1

AAB		
ACC		
BCC		

Sample Input 2

4 4	
A 4	
B 4	
C 4	
D 4	
4	
1 2 3 4	

Sample Output 2

AABB			
AACC			
BCDD			
BCDD			

Sample Input 3

4 5	
E 4	
A 3	
B 3	
C 3	
D 3	
2	
2 4	

Sample Output 3

AC BE DE	
BE DE	
DE	
ED	

Sample Input 4

4 6		
F 1		
E 3		
A 3		
B 3		
C 3		
D 3		
4		
1 2 3 4		

Sample Output 4

IMPOSSIBLE