Time limit: 0.6s Memory limit: 64M

You are given an array of N integers. Find a consecutive subsequence of numbers of the length at least K that has the maximal possible average.

Please note: the average of a subsequence is the sum of all the numbers in the subsequence divided by its length.

Input

The first line of input contains two integers N $(1 \le N \le 3 \cdot 10^5)$ and K $(1 \le K \le N)$. The second line of input contains N integers a_i $(1 \le a_i \le 10^6)$

Output

The first and only line of output must contain the maximal possible average. An absolute deviation of ± 0.001 from the official solution is permitted.

Scoring

In test cases worth 30% of total points, it will hold that N is not larger than $5\,000$.

Sample Input 1

4	1		
1	2	3	4

Sample Output 1

4.000000

Sample Input 2

42 2434

Sample Output 2

3.666666

Sample Input 3

6 3 7 1 2 1 3 6

Sample Output 3

3.333333