Time limit: 0.6s Memory limit: 64M

A student called Slon is very mischievous in school. He is always bored in class and he is always making a mess. The teacher wanted to calm him down and "tame" him, so he has given him a difficult mathematical problem.

The teacher gives Slon an arithmetic expression A, the integer P and M. Slon has to answer the following question: "What is the **minimal non-negative** value of variable x in expression A so that the remainder of dividing A with M is equal to P?". The solution will always **exist**.

Additionally, it will hold that, if we apply the **laws of distribution** on expression A, variable x will not multiply variable x (formally, the expression is a polynomial of the first degree in variable x).

Examples of valid expressions $A: 5 + x \cdot (3+2), x + 3 \cdot x + 4 \cdot (5 + 3 \cdot (2 + x - 2 \cdot x))$. Examples of invalid expressions $A: 5 \cdot (3 + x \cdot (3 + x)), x \cdot (x + x \cdot (1 + x))$.

Input Specification

The first line of input contains the expression A ($1 \le |A| \le 100000$).

The second line of input contains two integers P ($0 \le P \le M - 1$), M ($1 \le M \le 1\,000\,000$).

The arithmetic expression A will only consist of characters +, -, *, (,), x and digits from 0 to 9. The brackets will always be paired, the operators +, - and * will always be applied to exactly two values (there will not be an expression (-5) or (4+-5)) and all multiplications will be explicit (there will not be an expression 4(5) or 2(x)).

Output Specification

The first and only line of output must contain the minimal non-negative value of variable x.

Sample Input 1

5+3+x			
9 10			

Sample Output 1

1

Explanation for Sample Output 1

The remainder of dividing 5 + 3 + x with 10 for x = 0 is 8, and the remainder of division for x = 1 is 9, which is the solution.

Sample Input 2

20+3+x		
0 5		

Sample Output 2

2

Sample Input 3

3*(x+(x+4)*5) 1 7

Sample Output 3

1