CPC '21 Contest 1 P3 - AQT and Circles

Time limit: 2.0s **Memory limit:** 256M Python: 4.0s

AQT is studying circles and he has encountered the following problem. Two circles C_1 and C_2 have their centres located at (0,0) on a coordinate plane. Circle C_1 and C_2 have radii R_1 and R_2 ($R_1 \le R_2$), respectively. AQT decides to add another circle C_3 with radius R_3 ($R_3 < R_2$) and a centre that is located at (x, y), where x and y are real numbers. The location of circle C_3 is random but it follows the condition that it is completely inside circle C_2 . Formally, $x^2 + y^2 < (R_2 - R_3)^2$. A position of circle C_3 is called valid if the circumference of circle C_3 has 0 intersection points with the circumference of circle C_1 . AQT wants to know the probability that the position of circle C_3 is valid. AQT is given T of these problems. Can you help AQT solve all of them?

Constraints

In all subtasks,

 $1 \leq T \leq 2 \cdot 10^5$

 $1 \leq R_1 \leq R_2 \leq 10^3$

 $1 \leq R_3 < R_2$

It is guaranteed that R_{1} , R_{2} , and R_{3} are integers.

Subtask 1 [10%]

 $R_1 = R_2$

Subtask 2 [15%]

 $0 \leq R_2 - R_1 \leq 2$

 $R_3 < R_1$

Subtask 3 [75%]

No additional constraints.

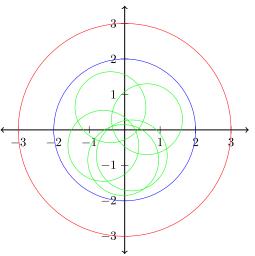
Input Specification

The first line contains T, the number of problems you need to help AQT solve.

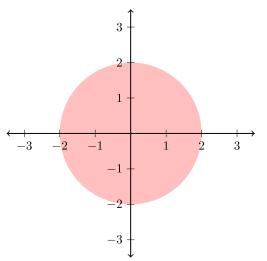
The next T lines each contain the radii of the three circles: $R_{1'}$, $R_{2'}$ and R_{3} .

Output Specification

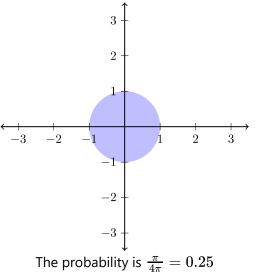
Output T lines. In the *i*-th line, output the answer to the *i*-th problem. Your answer will be considered correct if it differs from the correct answer by at most 10^{-3} .


Sample Input

Sample Output


0.25		
0.25		
0.375		
0.575		

Explanation


For the first test case, circle C_1 and C_2 are represented by the blue circle and the red circle, respectively. The green circles represent possible valid positions for circle C_3 .

This region represents the set of all possible centres for circle C_3 and has an area of 4π

This region represents the set of all **valid** centres for circle C_3 and has an area of π

