Time limit: 2.0s Memory limit: 256M Python: 3.0s Python: 512M

AQT is studying directed graphs and has encountered the following problem: given a directed graph consisting of N nodes with labels $1, 2, \ldots, N$ and M edges, find a pair of vertices (x, y) such that x < y and y is reachable from x. Can you help him find such a pair in the graph (or output -1 if none exists)?

Constraints

 $2 \leq N \leq 3 \cdot 10^5$

 $1 \leq M \leq 6 \cdot 10^5$

Subtask 1 [5%]

 $2 \leq N \leq 5 \cdot 10^3$

 $1 \leq M \leq 10^4$

Subtask 2 [10%]

If a directed edge connecting node a to b exists in the input, the edge connecting node b to node a is guaranteed to be in the input as well.

Subtask 3 [15%]

The graph will have no cycles.

Subtask 4 [70%]

No additional constraints.

Input Specification

The first line will contain the integers N, the number of vertices in the graph, and M, the number of edges in the graph.

The next M lines will each contain a directed edge in the form of 2 space-separated integers a, b, denoting an edge from node a to b. For all pairs (a, b), $a \neq b$.

Output Specification

Output a pair (x, y) such that x < y and y is reachable from x. If there exist multiple answers, output the one that maximizes x, and then y if there are multiple answers with maximum x.

If no answer exists, output [-1] instead.

Sample Input 1

 5
 5

 1
 4

 2
 5

 3
 1

 2
 4

 1
 2

Sample Output 1

35

Explanation 1

Here is the graph given in the input:

The pairs of vertices (x, y) such that x < y and y is reachable from x are:

- (1,2)
- (1,4)
- (1,5)
- (2,4)
- (2,5)
- (3,4)
- (3,5)

The output is thus 35 as (3,5) maximizes x, then y.

This graph also satisfies subtask 3.

Sample Input 2

55			
43			
52			
31			
42			
51			

Sample Output 2

-1

Explanation 2

Here is the graph given in the input:

There are no pairs of vertices (x, y) such that x < y and y is reachable from x, so the output is -1.

This graph also satisfies subtask 3.

Sample Input 3

4 6		
3 1		
1 2		
32		
2 1		
2 3		
1 3		

Sample Output 3

Explanation 3

Here is the graph given in the input:

This graph satisfies subtask 2.

Sample Input 4

66			
64			
4 1			
6 1			
32			
2 5			
3 5			

Sample Output 4

35

Explanation 4

Here is the graph given in the input:

This graph satisfies subtask 3.