Time limit: 3.0s Memory limit: 64M

You are given an $N \times M$ grid of squares. Each square contains a number a_i , $1 \le i \le N \times M$, the cost to travel through that square. You are starting at the most top-left square. At each turn you may choose to move down or right but not both. Find the minimum cost it would take you to travel to the most bottom-right square.

Constraints

In all tests, $2 \leq N, M \leq 500$ $1 \leq a_i \leq 10^6$

Input Specification

The first line contains two integers, N and M, the dimensions of the grid of squares (N rows and M columns). The next N lines each contains M integers, a_i , the cost to travel through that square in the grid.

Output Specification

Output on a single line, the minimum sum of costs to travel from the most top-left square to the most bottom-right square.

Sample Input

3 4			
3124			
9876			
2892			

Sample Output

18

Explanation for Sample Output

We can take the path $3 \rightarrow 1 \rightarrow 2 \rightarrow 4 \rightarrow 6 \rightarrow 2$, which gives us the sum of 18. There are no paths that yield a smaller sum.