Time limit: 2.0s Memory limit: 256M

Serena is learning about binary numbers in math class! She is given a binary number S, and she is also given series of M operations which she must perform on it. In one operation, she sets all bits in the 1-indexed range [l, r] to 1, and outputs the base-10 value of the binary number, modulo $10^9 + 7$.

The base-10 value of a binary number S of length n consisting of digits 0 and 1 is given by the sum of $S_i \times 2^{n-i}$ over all i in [1, n].

Input Specification

The first line contains two space-separated integers, |S| and M, the length of the number and the number of operations.

The next line contains S_i , the original binary number.

The next M lines contain two space-separated integers, l and r, representing an operation described in the problem statement.

Output Specification

For each operation, output the base-10 value of the binary number after performing the operation, modulo $10^9 + 7$.

Constraints

In all subtasks, $1 \leq |S| \leq 500\,000$ $1 \leq l \leq r \leq |S|$ $0 \leq M \leq 500\,000$

Subtask 1 [20%]

 $1 \leq |S| \leq 20$

Subtask 2 [80%]

No additional constraints.

Sample Input 1

5 2		
01000		
1 3		
2 4		

28 30