Time limit: 2.0s Memory limit: 128M

A continued fraction is an expression of the form

$$a_1+rac{1}{a_2+rac{1}{\cdot\cdot+rac{1}{a_n}}}$$

where a_1, a_2, \ldots, a_n are positive integers.

Bob has managed to obtain an array A of N positive integers. He now wants to compute Q continued fractions, the *i*-th of which uses the elements from indices l_i to r_i (inclusive) in the array, in order. For example, if A = [1, 4, 5, 2], $l_i = 2$, and $r_i = 4$, the answer would be:

$$4 + \frac{1}{5 + \frac{1}{2}} = 4 + \frac{2}{11} = \frac{46}{11}$$

Please help Bob with this task!

Constraints

 $egin{aligned} 1 \leq N, Q \leq 300\,000 \ 1 \leq A_i \leq 10^9 \ 1 \leq l_i \leq r_i \leq N \end{aligned}$

Subtask 1 [10%]

 $1 \leq N,Q \leq 1000$

Subtask 2 [90%]

No additional constraints.

Input Specification

The first line of input will contain two space-separated integers, N and Q. The second line will contain N space-separated integers, A_1 through A_N . The next Q lines will each contain two space-separated integers, l_i and r_i .

Output Specification

Q lines, each containing two space-separated integers: the numerator and denominator of the *i*-th continued fraction, **in lowest terms**. Since these numbers may be very large, you may output them mod $10^9 + 7$. However, note that the fraction must be in lowest terms before modding; reducing the fraction after modding may not yield the same result!

Sample Input

4 3	
1 4 5 2	
2 4	
1 2	
3 3	

Sample Output

46 11		
5 4		
5 1		