
DMOPC '22 Contest 3 P6 - Compressibility

In his latest 15-122 (Principles of Imperative Computation) homework, Edward learned how to compress strings using
prefix-free codes generated by Huffman coding. Although this is a great start, he wonders whether better compression
algorithms exist by abusing repetitions in the string. For example, if we define the repeatability of a string as the
maximum integer such that is the concatenation of copies of some string , then it is not hard to see that strings
with higher repeatability are easier to compress.

However, using repeatability as a measure of compressibility is not quite perfect: the string aaabaab only has
repeatability but still contains many repetitions. In an attempt to fix this flaw, he defines the compressibility of a string
as the sum of the repeatability of all of its substrings. This seems to be a better metric: the compressibility of aaabaab

is while the compressibility of huffman is , even though they both have repeatability .

In order for this metric to be useful though, it remains to find an efficient algorithm that computes the compressibility of
any given string . Therefore, your job is to write a program to help him compute the compressibility of .

Constraints

 only contains lowercase characters.

Subtask 1 [10%]

Subtask 2 [20%]

Subtask 3 [70%]

No additional constraints.

Input Specification

The first and only line contains a string .

Output Specification

Output the compressibility of on its own line.

Sample Input

Time limit: 2.0s Memory limit: 512M

s

k s k t

1

34 29 1

S S

1 ≤ |S| ≤ 2 × 105

S

1 ≤ |S| ≤ 500

1 ≤ |S| ≤ 5 × 103

S

S

aaabaab

Sample Output

34

Explanation for Sample

There are substrings of repeatability .

There are substrings of repeatability , namely , , , and .

There is substring of repeatability , namely .

Thus, the compressibility can be computed as .

23 1

4 2 S[0 : 1] = aa S[1 : 2] = aa S[4 : 5] = aa S[1 : 6] = aabaab

1 3 S[0 : 2] = aaa

23 × 1 + 4 × 2 + 1 × 3 = 34

