Time limit: 2.5s Memory limit: 256M

The land of carrot trees is a magical land tree with N nodes and N-1 edges, rooted at node 1. One day, a lonely carrot decides to ask Q queries of the form n d: the number of unordered pairs of nodes that have a depth between depth(n) and depth(n) + d have node n as their **lowest common ancestor**. Note that these pairs may include the node n itself and the pair may be two of the same node. Also note that this d can be larger than the height of the subtree from n. Can you help the poor carrot with these queries?

Note: The lowest common ancestor of nodes u and v is the furthest node from the root that is on the path from u to the root *and* on the path from v to the root.

Constraints

For all subtasks:

 $1 \leq a_i, b_i \leq N$

 $1 \leq n_i \leq N$

Subtask 1 [10%]

 $1 \leq N,Q \leq 200\,000$

 $d_i = N$

Subtask 2 [20%]

 $1 \leq N,Q \leq 2\,000$

 $0 \leq d_i \leq N$

Subtask 3 [70%]

 $1 \leq N,Q \leq 200\,000$

 $0 \leq d_i \leq N$

Input Specification

The first line will have N, the number of nodes.

The next N-1 lines will have two integers, a_i and $b_{i'}$ indicating that there is an edge from a_i to b_i .

The next line will have Q, the number of queries that follow.

The next Q lines will have two space separated integers, n_i and d_i , the n and d values for the $i^{
m th}$ query.

Output Specification

The answer to each query, each on a new line.

Sample Input

10			
1 2			
1 3			
4 2			
5 2			
62			
7 3			
8 3			
95			
10 6			
5			
1 4			
1 3			
2 1			
2 2			
1 2			

Sample Output

28			
28			
7			
14			
20			

Explanation for Sample

For the third query, the 7 unordered pairs are (2, 2), (2, 4), (2, 5), (2, 6), (4, 5), (4, 6), (5, 6).