Time limit: 1.0s	Memory limit: 128M
PyPy 2: 15.0s	PyPy 2: 256M
PyPy 3: 15.0s	РуРу 3: 256М

Today, we'll be practicing modifications on a tree!

Input Specification

The first line contains two integers, N and M, denoting that there are N vertices and M queries.

Then there are N integers on the next line, each containing one number: the initial weight of each vertex.

Then there are N-1 lines, each line containing two integers x and y, denoting that there is an edge between x and y in the tree.

Then the next line contains the root.

Then there are M lines:

The first number is K.

K = 0 means change root. The line contains one additional integer x, representing the new root of the tree.

K = 1 means path modification. K is followed by integers x, y, z. This operation sets z as the vertex weight of all vertices on the path from x to y.

K = 2 means path increment. K is followed by x, y, z. This operation increments all vertex weights on the path from x to y by z.

K = 3 means path min. K is followed by x and y, and asks for the min of the weights on the path from x to y.

K = 4 means path max. K is followed by x and y, and asks for the max of the weights on the path from x to y.

K = 5 means path sum. K is followed by x and y, and asks for the sum of the weights on the path from x to y.

K = 6 means change parent. K is followed by x and y. This operation changes the parent of x to y. If y is in the subtree of this operation, do nothing.

K = 7 means lowest common ancestor (LCA). K is followed by x and y. This operation queries the LCA of x and y.

Output Specification

Print an answer for each query. All answers go on their own lines.

Constraints

 $1 \leq N, M \leq 10^5$

 $1 \leq x,y \leq N$

Subtasks

For 20% of the points, $K
ot \in \{0,1,2,6\}$.

For 50% of the points, $K
ot \in \{0,6\}.$

All intermediate values can be stored in a signed 32-bit integer.

Sample Input 1

5	6			
1	3	5	2	10
1	2			
1	3			
3	4			
3	5			
3				
3	3	2		
7	4	1		
2	2	5	3	
1	3	4	0	
4	2	4		
5	1	5		

Sample Output 1

1		
3		
6		
17		

Sample Input 2

Sample Output 2

1		
1		
3		
4		
5		
21		
1		
202		