
EGOI '22 P3 - Social Engineering

A social network consists of an undirected connected graph with vertices and edges, where each vertex is a person,
and two people are friends, if there is an edge between them.

Maria is a member of this social network. She likes challenging her friends to do various things. This means that she first
performs some simple task, and then challenges one of her friends to do the same. This friend will then challenge one of
their friends, who will challenge one of their friends, and so on. It could happen that the same person gets challenged
more than once, but each unordered pair of friends can only take part in the challenge at most once. (Once a person A
challenges a person B, then neither person A nor person B can challenge the other again.) In other words, the challenges
will be a walk in the graph that never uses an edge more than once.

A person loses the challenge if it is their turn and they cannot challenge any of their friends. The challenges are always
started by Maria, and she rarely loses. Now the remaining people have decided to collaborate in order to make
Maria lose the next challenge, and it is your job to coordinate this effort.

Implementation Details

You must implement a function:

void SocialEngineering(int n, int m, vector<pair<int,int>> edges);

that plays the game on a graph with vertices and edges. This function will be called once by the grader. The list
edges will contain exactly pairs of integers , meaning that an edge goes between vertex and vertex . Vertices
are numbered from to . Maria is always vertex 1. Your function can make calls to the following functions:

int GetMove();

This method should be called whenever it is Maria's turn, such as in the beginning of the game. If you call this method
when it is not Maria's turn, you will get the verdict Wrong Answer . The method can return one of the following values:

an integer , where . This means that Maria challenges the person with index . This will always be a legal
move.
0, if Maria resigns the game. Maria will always resign, if she has no legal moves. When this happens, your program
should let the function SocialEngineering return, and you will get the verdict Accepted.

void MakeMove(int v);

This method should be called whenever it is not Maria's turn. This means that the person with the turn challenges the
person . If this is not a legal move or if it is Maria's turn at the time of the call, then you will get the verdict Wrong

Time limit: 5.0s Memory limit: 256M

n m

n − 1

n m

m (u, v) u v

1 n

v 2 ≤ v ≤ n v

v

Answer . If Maria has a winning strategy at the start of the game, your program should let SocialEngineering return
before the first call to GetMove() . You will then get the verdict Accepted .

Constraints

.
.

The graph is connected. Every unordered pair of vertices will appear at most once as an edge, and every edge will
go between two different vertices.

Subtasks

Maria will always play perfectly in the sense that she will make winning moves whenever she has a winning strategy. If
she does not have a winning strategy, then she will try to lure your program into making a mistake, in various clever
ways. She will only resign if she has no legal moves, except in Subtask 3.

Subtask 1 (15 points) .
Subtask 2 (15 points) Everyone except Maria has at most 2 friends.
Subtask 3 (20 points) Maria will resign immediately unless she has a winning strategy.
Subtask 4 (25 points) .
Subtask 5 (25 points) No further constraints.

Sample Interaction 1

Your Action Grader Action Explanation

- SocialEngineering(5, 6, {{1,4},{1,5},

{2,4}, {2,5}, {2,3},{3,5}})

SocialEngineering is called with a graph
with 5 vertices and 6 edges

GetMove() Returns 4 Maria challenges person 4

MakeMove(2) - Person 4 challenges person 2

MakeMove(5) - Person 2 challenges person 5

MakeMove(1) - Person 5 challenges Maria

GetMove() Returns 0 Maria has no legal moves, so she resigns

Returns - You have won the game, and should let
SocialEngineering return.

Sample Interaction 2

Your Action Grader Action Explanation

2 ≤ n ≤ 2 ⋅ 105

1 ≤ m ≤ 4 ⋅ 105

n, m ≤ 10

n, m ≤ 100

- SocialEngineering(2,1,

{{1,2}})

SocialEngineering is called with a graph with 2 vertices and 1
edge

Returns - Maria has a winning strategy on this graph, so you should return
without making any GetMove() calls to resign.

