
Page 1 of 3

Executable Format

The Windows/MS-DOS world was never really designed. Rather, it evolved. The whole world is really a mess. For
example, there were many executable formats back then.

The first executable format is COM , used by MS-DOS as it was compatible with CP/M, with extension .com . This
format has absolutely no format. The entire file is loaded at offset 0x100 in the current segment and simply executed
by jumping to the first byte with a jmp 100h .

The next format is the MZ format, used by MS-DOS, with extension .exe , but .com works too. This format has a
header that stores information about the code, and most importantly, it allows the code to be relocated to any place in
memory, instead of being forced at 0x100 . This format is identified by the magic number MZ , word 0x5A4D , or
bytes 4D 5A . (x86 is little-endian.) MZ, of course, is the initials of the legendary Mark Zbikowski, an MS-DOS
developer.

And then there is NE (new executable), the executable format of Windows 1.0 through 3.x, with the extension .exe

or .com . This format is designed to be compatible with MZ , so it starts with an MZ header and the letters MZ . So
how would one identify it? Luckily, the MZ header has a field e_lfanew , at the offset 0x3C . This is a DWORD , or
unsigned 32-bit integer (4 bytes) that points to the start of a new header, in this case NE . Since the x86 is a little-
endian platform, the integer is also little-endian, meaning that the least significant bytes are listed first. You can already
see this from the previous example of 0x5A4D , which is stored as 4D 5A as bytes. The NE header starts with the
bytes NE . That is, the first 2 bytes starting at the offset represented by e_lfanew form the header name.

Similarly, OS/2 used the LE format (linear executable). It also made use of e_lfanew , but instead of NE , LE is
found at that offset.

Finally, the most common executable format of today, but not even publicly released in 1992, is the PE format
(portable executable). It is the executable format of modern Windows. Similar to both LE and NE , it used
e_lfanew , but the bytes at that offset is PE (0x4550 , 50 45).

Your assignment is to determine the format of an executable from its hexdump.

Sidebar

How do you know if something that starts with MZ is not just a COM file which happened to start with MZ ? We
know for sure because this is what MZ , or 4D 5A disassembles to:

0100 4D DEC BP
0101 5A POP DX

DEC BP decrements a register whose value is undefined. No one in the right mind would do that. But wait, it gets
worse. POP DX underflows the stack, because there is nothing to pop off the stack. This is a very serious bug, because

Time limit: 1.0s Memory limit: 64M

https://devblogs.microsoft.com/oldnewthing/20060130-00/?p=32483
https://devblogs.microsoft.com/oldnewthing/20080324-00/?p=23033

Page 2 of 3

the stack pointer overflows (stack grows downward) and would wrap around to 0 .

Input Specification

The first line contains the integer such that , the number of bytes in the hex dump.

The next lines contain the hex dump, each containing 16 (possibly less for the last line) bytes of the code in
hexadecimal, separated by spaces.

Output Specification

Output COM , MZ , NE , LE , or PE , depending on the format detected. If e_lfanew points outside the file or to
an unknown value, output MZ .

Sample Input

256
4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00
B8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 E8 00 00 00
0E 1F BA 0E 00 B4 09 CD 21 B8 01 4C CD 21 54 68
69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F
74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20
6D 6F 64 65 2E 0D 0D 0A 24 00 00 00 00 00 00 00
9D 68 BA 89 D9 09 D4 DA D9 09 D4 DA D9 09 D4 DA
D0 71 41 DA D8 09 D4 DA D0 71 50 DA DB 09 D4 DA
D0 71 47 DA DE 09 D4 DA D9 09 D5 DA F1 09 D4 DA
D0 71 57 DA CF 09 D4 DA D0 71 40 DA D8 09 D4 DA
D0 71 45 DA D8 09 D4 DA 52 69 63 68 D9 09 D4 DA
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 50 45 00 00 4C 01 04 00
1C AC 88 54 00 00 00 00 00 00 00 00 E0 00 03 01

Sample Output

PE

Explanation

N 1 ≤ N ≤ 131 072

⌈ N

16
⌉

Page 3 of 3

Credits to the Python Software Foundation because sample input is python.exe 's first 256 bytes, and also to Microsoft whose compiler

generated that file.

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 MZ..........ÿÿ..
00000010 B8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 ¸.......@.......
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000030 00 00 00 00 00 00 00 00 00 00 00 00 E8 00 00 00 è...
00000040 0E 1F BA 0E 00 B4 09 CD 21 B8 01 4C CD 21 54 68 ..º..´.Í!¸.LÍ!Th
00000050 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F is program canno
00000060 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 t be run in DOS
00000070 6D 6F 64 65 2E 0D 0D 0A 24 00 00 00 00 00 00 00 mode....$.......
00000080 9D 68 BA 89 D9 09 D4 DA D9 09 D4 DA D9 09 D4 DA .hº‰Ù.ÔÚÙ.ÔÚÙ.ÔÚ
00000090 D0 71 41 DA D8 09 D4 DA D0 71 50 DA DB 09 D4 DA ÐqAÚØ.ÔÚÐqPÚÛ.ÔÚ
000000A0 D0 71 47 DA DE 09 D4 DA D9 09 D5 DA F1 09 D4 DA ÐqGÚÞ.ÔÚÙ.ÕÚñ.ÔÚ
000000B0 D0 71 57 DA CF 09 D4 DA D0 71 40 DA D8 09 D4 DA ÐqWÚÏ.ÔÚÐq@ÚØ.ÔÚ
000000C0 D0 71 45 DA D8 09 D4 DA 52 69 63 68 D9 09 D4 DA ÐqEÚØ.ÔÚRichÙ.ÔÚ
000000D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000E0 00 00 00 00 00 00 00 00 50 45 00 00 4C 01 04 00 PE..L...
000000F0 1C AC 88 54 00 00 00 00 00 00 00 00 E0 00 03 01 .¬ˆT........à...

