
IOI '21 P4 - Mutating DNA

Grace is a biologist working in a bioinformatics firm in Singapore. As part of her job, she analyses the DNA sequences of
various organisms. A DNA sequence is defined as a string consisting of characters "A", "T", and "C". Note that in this task
DNA sequences do not contain character "G".

We define a mutation to be an operation on a DNA sequence where two elements of the sequence are swapped. For
example a single mutation can transform "ACTA" into "AATC" by swapping the highlighted characters "A" and "C".

The mutation distance between two sequences is the minimum number of mutations required to transform one
sequence into the other, or if it is not possible to transform one sequence into the other by using mutations.

Grace is analysing two DNA sequences and , both consisting of elements with indices from to . Your task is
to help Grace answer questions of the form: what is the mutation distance between the substring and the
substring ? Here, a substring of a DNA sequence is defined to be a sequence of consecutive characters
of , whose indices are to inclusive. In other words, is the sequence .

Implementation Details

You should implement the following procedures:

void init(std::string a, std::string b)

, : strings of length , describing the two DNA sequences to be analysed.
This procedure is called exactly once, before any calls to get_distance .

int get_distance(int x, int y)

, : starting and ending indices of the substrings to be analysed.
The procedure should return the mutation distance between substrings and .
This procedure is called exactly times.

Example

Consider the following call:

init("ATACAT", "ACTATA")

Time limit: 2.0s Memory limit: 512M

−1

a b n 0 n − 1

q a[x. . y]

b[x. . y] s[x. . y] s

s x y s[x. . y] s[x]s[x + 1] … s[y]

a b n

x y

a[x. . y] b[x. . y]

q

Let's say the grader calls get_distance(1, 3) . This call should return the mutation distance between and
, that is, the sequences "TAC" and "CTA". "TAC" can be transformed into "CTA" via mutations: TAC CAT,

followed by CAT CTA, and the transformation is impossible with fewer than mutations.

Therefore, this call should return .

Let's say the grader calls get_distance(4, 5) . This call should return the mutation distance between sequences "AT"
and "TA". "AT" can be transformed into "TA" through a single mutation, and clearly at least one mutation is required.

Therefore, this call should return .

Finally, let's say the grader calls get_distance(3, 5) . Since there is no way for the sequence "CAT" to be
transformed into "ATA" via any sequence of mutations, this call should return .

Constraints

Each character of and is one of "A", "T", and "C".

Subtasks

1. (points)
2. (points) , each character of and is either "A" or "T".
3. (points) each character of and is either "A" or "T".
4. (points)
5. (points) No additional constraints.

Sample Grader

The sample grader reads the input in the following format:

line :
line :
line :
line : for the -th call to get_distance .

The sample grader prints your answers in the following format:

line : the return value of the -th call to get_distance .

Attachment Package

The sample grader and sample test cases are available here: dna.zip.

a[1..3]

b[1..3] 2 →

→ 2

2

1

−1

1 ≤ n, q ≤ 100 000

0 ≤ x ≤ y ≤ n − 1

a b

21 y − x ≤ 2

22 q ≤ 500, y − x ≤ 1000 a b

13 a b

28 q ≤ 500, y − x ≤ 1000

16

1 n q

2 a

3 b

4 + i (0 ≤ i ≤ q − 1) x y i

1 + i (0 ≤ i ≤ q − 1) i

https://static.dmoj.ca/data/ioi/21/ioi21p4/dna.zip

