Consider two integers, X and Y. There are two operations which you can perform any number of times:

- Set X to X + 1.
- Set X to $X \bigcirc Y$.

For each of the T test cases, you must calculate the fewest operations needed to make X equal to Y or determine that no such sequence of operations exists.

Constraints

 $1 \le T \le 10^{6}$ $0 \le X, Y < 2^{60}$ Subtask 1 [30%]

T=1

 $0 \leq X,Y \leq 10^6$

Subtask 2 [70%]

No additional constraints.

Input Specification

The first line contains an integer, T, the number of test cases.

Each of the next T lines contains two space-separated integers, X and Y.

Output Specification

For each test case, on its own line, output the fewest operations needed to make X equal to Y. If no sequence of operations exists, output -1 instead.

Sample Input

2	
1	2

1 Z

36

Sample Output