Time limit: 1.0s Memory limit: 256M

Consider a permutation of the first N positive integers, p_1, p_2, \ldots, p_N . Define a_i as the length of the longest increasing subsequence of p_1, p_2, \ldots, p_i .

Given a_1, a_2, \ldots, a_n , find the lexicographically minimal possible permutation p_1, p_2, \ldots, p_N , or determine that no such permutation exists.

Constraints

 $1 \leq N \leq 2 imes 10^5$

 $1 \leq a_i \leq N$

Input Specification

The first line contains an integer, N.

The second line contains N space-separated integers, a_1, a_2, \ldots, a_N .

Output Specification

If there is no sequence p that can produce sequence a, output -1; otherwise, output one line containing N positive integers, representing the lexicographically minimal permutation p_1, p_2, \ldots, p_N .

Sample Input 1

3 1 2 2

Sample Output 1

132

Explanation for Sample Output 1

Note that

• The longest increasing subsequence of p_1 is 1.

- The longest increasing subsequence of p_1, p_2 is 1, 3.
- One of the longest increasing subsequences of p_1, p_2, p_3 is 1, 2.

Sample Input 2

3 1 2 1

Sample Output 2

-1

Explanation for Sample Output 2

No possible permutation p exists.