Time limit: 1.0s Memory limit: 64M

National Olympiad in Informatics, China, 2001

Given an n-th order equation:

$$k_1 x_1^{p_1} + k_2 x_2^{p_2} + \dots + k_n x_n^{p_n} = 0$$

where: x_1, x_2, \ldots, x_n are the unknowns, k_1, k_2, \ldots, k_n are the coefficients, and p_1, p_2, \ldots, p_n are the exponents. Additionally, each value in the equation is an integer.

Assume that the unknowns will satisfy $1 \le x_i \le M$ for $i = 1 \dots n$. Find the number of integer solutions.

Input Specification

The first line of input contains the integer n.

The second line of input contains the integer M.

Lines 3 to n + 2 will each contain two space-separated integers, the values of k_i and p_i respectively. Line 3 corresponds to when i = 1, and line n + 2 corresponds to when i = n.

Output Specification

Output one integer - the number of integer solutions that solve the equation.

Sample Input

3			
150			
1 2			
-1 2			
1 2			

Sample Output

178

Constraints

• $1 \leq n \leq 6$

- $1 \leq M \leq 150$
- $ullet \ |k_1M^{p_1}| + |k_2M^{p_2}| + \dots + |k_nM^{p_n}| < 2^{31}$
- The number of solutions will be less than 2^{31} .
- The exponents P_i $(i=1,2,\ldots,n)$ in this problem will each be a positive integer.

Problem translated to English by **Alex**.