
NOI '18 P2 - Inverse

Consider the bubble sort algorithm:

for i = 1 to n do
 for j = 1 to n - 1 do
 if(p[j] > p[j + 1])
 swap(p[j], p[j+1])

Let denote as the number of times the function is called when we run the bubble sort algorithm on
permutation . We call a good permutation if . One can prove is a tight lower
bound for permutations of length .

You are given an permutation and asked to the number of good permutations of length that is strictly
lexicographically larger than . The output might be too large, so you only need to output the answer under modulo

Input Specification

The first line contains an integer , the number of test cases.

For each test case,

The first line contains an integer , which is the length of the permutation.
The second lines contains integers in the permutation.

Output Specification

For each test case, output the answer under modulo

Constraints

For all test file, .

 is the maximum in a single file. is the sum of is a single file.

Sample 1 Input

Time limit: 1.0s Memory limit: 512M

f(p) swap

p p f(p) = 1
2 ∑

n
i=1 |i − pi|

1
2 ∑

n
i=1 |i − pi|

n

q n

q

998244353

T

n

n

998244353

T = 5

nmax n ∑n n

1
3
1 3 2

Sample 1 Output

3

Sample 1 Explanation

All permutation lexicographically larger than " " is good except " "

Sample 2 Input

1
4
1 4 2 3

Sample 2 Output

9

Subtask

For all data, is satisfied (sample may not be satisfied).

Denote to denote the maximum value of in each set of data, and to denote the sum of for all data.

test point special properties

1 None

2 none

3 None

4 None

5 None

1 3 2 3 2 1

T = 5

nmax n ∑n n

nmax = ∑n ≤

8 5 nmax

9 5 nmax

10 5 nmax

12 5 nmax

13 5 nmax

test point special properties

6 None

7 None

8 None

9 None

10 None

11 None

12

13 None

14 None

14 None

16 None

17

18 None

19 None

20 None

21

22 none

23 None

24 None

25 none

nmax = ∑n ≤

14 5 nmax

16 5 nmax

16 5 nmax

17 5 nmax

18 5 nmax

18 5 nmax

122 700 ∀i qi = i

144 700

166 700

166 700

233 700

777 4000 ∀i qi = i

888 4000

933 4000

1000 4000

266666 2000000 ∀i qi = i

333333 2000000

444444 2000000

555555 2000000

600000 2000000

