Time limit: 2.0s Memory limit: 1G

Given a tree T = (V, E) (V is the set of vertices and E is the set of edges) and a set of pairs of vertices $Q \subset V \times V$ satisfying for all $(u, v) \in Q$, $u \neq v$ and u is an ancestor of v on tree T, you are supposed to compute how many functions $f : E \to \{0, 1\}$ (i.e. for each edge $e \in E$, the value of f(e) would be either 0 or 1) satisfies the condition for any $(u, v) \in Q$ there exists an edge e on the path from u to v such that f(e) = 1. Output the answer modulo 998 244 353.

Input Specification

The first line contains an input n denoting the number of vertices in tree T. The nodes are numbered from 1 to n and the root node is node 1. In the following n - 1 lines, each line contains two integers separated by a space x_i, y_i such that $1 \le x_i, y_i \le n$ denoting there exists an edge on the tree between node x_i and y_i . There are no guarantees for the direction of the edge. The following line contains an integer m denoting the size of Q. In the following m lines, each line contains two integers separated by a space u_i, v_i denoting $(u_i, v_i) \in Q$. There may be duplication, or in other words, there might exist some $i \ne j$ such that $u_i = u_j$ and $v_i = v_j$.

Output Specification

The output contains only an integer denoting the number of functions f satisfying the condition above.

Sample Input 1

5			
1 2			
2 3			
3 4			
3 5			
2			
1 3			
2 5			

Sample Output 1

10			

Sample Input 2

15			
2 1			
3 1			
4 3			
5 2			
6 3			
76			
8 4			
95			
10 7			
11 5			
12 10			
13 3			
14 9			
15 8			
6			
3 12			
5 11			
2 5			
3 13			
8 15			
1 13			

Sample Output 2

960

Constraints

For all test cases, $n \leq 5 imes 10^5, \, m \leq 5 imes 10^5.$

The input forms a tree, where for all $1 \leq i \leq m$, u_i is the ancestor of v_i .

Test Case	n	m	Additional Constraints

1	≤ 10	≤ 10	None.
2	-		
3	-		
4	-		
5	≤ 500	≤ 15	
6	≤ 10000	≤ 10	
7	≤ 100000	≤ 16	
8	≤ 500000		
9	≤ 100000	≤ 22	
10	≤ 500000		
11	≤ 600	≤ 600	
12	≤ 1000	≤ 1000	
13	≤ 2000	≤ 500000	
14			
15	≤ 500000	≤ 2000	
16			
17	≤ 100000	≤ 100000	See below.
18			
19	≤ 50000		None.
20	≤ 80000		
21	≤ 100000	≤ 500000	
22			
23	≤ 500000		
24			
25			

In this problem, a perfect binary tree is a binary tree such that each non-leaf node has two children and the depths of all leaf nodes are the same; if we number the nodes in a perfect binary tree from up to down, from left to right, the tree

formed by the nodes with smallest numbers form a complete binary tree. Test cases 17 and 18 are complete binary trees.