NOI '23 P5 - String

Time limit: 2.0s Memory limit: 512M

Little Y is a college student who is currently doing researches related to strings. Little Y learned about the following definitions regarding strings:

- Given a string s[1:n] of length n, we define its substring $s[l:r](1 \le l \le r \le n)$ as the new string obtained by selecting $s[l], s[l+1], \ldots, s[r]$ in order and concatenating them.
- Given a string s[1:n] of length n, we define its reversed result R(s) as the string obtained by concatenating $s[n], s[n-1], \ldots, s[1]$ in order, which is the string obtained by reversing the original string.
- Given two strings a[1:n] and b[1:n] of equal length n, we define a to be lexicographically smaller than b if and only if there exists $1 \le i \le n$ such that for any $1 \le j < i, a[j] = b[j]$, and a[i] < b[i].

After understanding the above definitions, Little Y came up with the following problem:

Given a string s[1:n] of length n, there are q queries, each query giving two parameters i and r. You need to find out how many values of l satisfy the following conditions:

- $1 \leq l \leq r$.
- s[i:i+l-1] is lexicographically smaller than R(s[i+l:i+2l-1]).

Little Y would like to ask for your help in solving this problem.

Input Specification

This problem has multiple test data sets.

The first line of the input contains two integers c and t, which represent the test case number and the number of test data sets. c = 0 represents that this test case is a sample test.

Then, each set of test data is given as input in order. For each set of test data:

The first line of input contains two positive integers, n and q, which represent the length of the string and the number of queries respectively.

The second line of input contains a string s of length n that only consists of lowercase letters.

Then q lines follow, each containing two positive integers, i and r, representing a query. It is guaranteed that $i + 2r - 1 \le n$.

Output Specification

For each query of each set of test data, output a line containing an integer, representing the number of *l*s satisfying the requirements.

Sample Input 1

0 2	
9 3	
abacababa	
1 4	
2 4	
3 3	
9 3	
abaabaaba	
1 4	
2 4	
3 3	

Sample Output 1

4			
0			
3			
2			
0			
2			

Explanation for Sample Output 1

For the first set of test data in the sample:

- When l=1, $s[i:i+l-1]=\mathsf{a}$, $R(s[i+l:i+l+l-1])=\mathsf{b}$.
- When l=2, $s[i:i+l-1]=\mathsf{ab}$, $R(s[i+l:i+l+l-1])=\mathsf{ca}.$
- When l=3, $s[i:i+l-1]=\mathsf{aba}$, $R(s[i+l:i+l+l-1])=\mathsf{bac}$.
- When l=4, s[i:i+l-1]= abac, R(s[i+l:i+l+l-1])= baba.

In all four cases, s[i:i+l-1] is lexcicographically smaller than R(s[i+l:i+2l-1]), so the answer is 4.

Additional Samples

Sample inputs and outputs can be found here.

- Sample 2 (ex_string2.in) and ex_string2.ans) corresponds to test case 5.
- Sample 3 (ex_string3.in) and (ex_string3.ans).
- Sample 4 (ex_string4.in) and ex_string4.ans) corresponds to test cases 24-25.

Constraints

For all test data, it is guaranteed that: $1 \le t \le 5, 1 \le n \le 10^5, 1 \le q \le 10^5, 1 \le i + 2r - 1 \le n$. The string *s* only consists of lowercase letters.

Test ID	$n\leq$	q	Additional Constraints
1	≤ 5	≤ 5	А
2	≤ 10	≤ 10	
3	≤ 20	≤ 20	
4	≤ 50	≤ 50	
5	$\leq 10^2$	$\leq 10^2$	
6	$\leq 10^3$	$\leq 10^3$	None
7	≤ 2000	≤ 2000	
8	≤ 3000	≤ 3000	
9	≤ 4000	≤4000	
10	≤ 23333	≤ 23333	А
11	$\leq 5 imes 10^4$	$\leq 5 imes 10^4$	
12	≤ 75000	≤ 75000	
13	$\leq 9 imes 10^4$	$\leq 9 imes 10^4$	
14	$\leq 10^5$	$\leq 10^5$	
15	≤ 23333	≤ 23333	В
16	≤ 75000	≤ 75000	
17	$\leq 9 imes 10^4$	$\leq 9 imes 10^4$	
18	$\leq 10^5$	$\leq 10^5$	

19	≤ 23333	≤ 23333	None
20	$\leq 5 imes 10^4$	$\leq 5 imes 10^4$	
21	≤ 75000	≤ 75000	
22	$\leq 9 imes 10^4$	$\leq 9 imes 10^4$	
23	≤ 95000	≤ 95000	
24	10^5	10^5	
25			

Additional Constraint A: It is guaranteed that the input string only consists of a and b, and each character is uniformly chosen from a and b at random.

Additional Constraint B: It is guaranteed that every pair of adjacent characters in the input string are distinct.