NOIP '18 P3 - Constructing Tracks

Time limit: 1.0s Memory limit: 512M

Given a tree with n vertices. Edge i of the tree has length l_i . We need to choose m edge-disjoint paths such that the length of the path with minimum length is maximized.

Input Specification

The first line contains two integers *n* and *m* denoting the number of vertices and the number of paths to be chosen.

In the following n - 1 lines, the i^{th} line contains three positive integers a_i, b_i, l_i denoting the i^{th} edge goes from a_i to b_i and has length l_i .

Output Specification

The output contains an integer denoting the maximum possible minimum length of the m tracks chosen.

Sample Input 1

7 1			
1 2 10			
1 3 5			
249			
258			
366			
377			

Sample Output 1

31

Note: the chosen path is the path from vertex 4 to vertex 7.

Sample Input 2

93			
126			
233			
3 4 5			
4 5 10			
624			
729			
847			
944			

Sample Output 2

15

The chosen paths are the path from vertex 1 to vertex 7, vertex 6 to vertex 9, and vertex 8 to vertex 5.

Additional Samples

Additional samples can be found here.

Constraints

Test Case	$n\leq$	m	$a_i = 1$	$b_i=a_i+1$	Degree of vertex ≤ 3
1	5	=1	No	No	Yes
2	10	$\leq n-1$		Yes	
3	15		Yes	No	No
4	1 000	=1	No		Yes
5	30 000		Yes		No
6			No		
		~			

7		$\leq n-1$	Yes		
8	50000				
9	1000		No	Yes	Yes
10	30 000				
11	50000				
12	50			No	
13					
14	200				
15	-				
16	1 000				
17					No
18	30 000				
19					
20	50000				

For all test cases, $2 \leq n \leq 50\,000$, $1 \leq m \leq n-1$, $1 \leq a_i, b_i \leq n, \, 1 \leq l_i \leq 10\,000$.