Time limit: 1.0s Memory limit: 512M

Given the first N positive integers, there are $2^N - 1$ non-empty subsets. Bob wants to choose M distinct subsets from them so that each integer in the union of the M subsets occurred an even number of times. For example, if N = 3 and M = 3, there are 7 non-empty subsets. Bob can choose the subsets $\{1\}$, $\{2\}$, and $\{1, 2\}$, where every integer has an even number of occurrences. Can you help Bob to find the number of different ways to choose the M subsets? Since the answer is huge, ouptut the answer modulo $10^9 + 7$.

Input Specification

The first line of input contains two integers N and M ($N, M \le 10^6$).

Output Specification

Output one integer, the number of ways to choose subsets.

Constraints

Subtask	Points	Additional constraints
1	20	$N,M\leq 5.$
2	30	$N,M\leq 3000.$
3	50	No additional constraints.

Sample Input 1

33

Sample Output 1

7

Explanation

There are $7\ {\rm ways}$ to choose $3\ {\rm subsets},$ listed as following:

- $\{1\}, \{2\}, \{1, 2\}$
- $\{1\}, \{3\}, \{1,3\}$
- {2}, {3}, {2,3}
- $\{1\}, \{2,3\}, \{1,2,3\}$
- $\{2\}, \{1,3\}, \{1,2,3\}$
- $\{3\}, \{1,2\}, \{1,2,3\}$
- {1,2}, {2,3}, {1,3}

Sample Input 2

53

Sample Output 2

155