UTS Open '18 P6 - Subset Sum

Time limit: 1.0s **Memory limit:** 256M Java: 3.0s

One day, **PlasmaVortex** gave **insect** a question to solve: the Subset Sum Problem! However, **insect** proved that it was NP-complete, so **PlasmaVortex** makes up a new problem about subset sums:

Each of the 2^N $(1 \le N \le 18)$ subsets of the set $\{1, 2, ..., N\}$ has an N-bit identifier s, where the ith bit $(1 \le i \le N)$ of s is 1 if the set contains i, and 0 if the set doesn't contain i. Each set also has a value V_s $(0 \le s < 2^N, 1 \le V_s \le 10^6)$. There are Q queries that come in two different types:

- 1. 1 s v The set whose N-bit identifier is s has its value changed to v_{\cdot} $(0 \le s < 2^N, 1 \le v \le 10^6)$
- 2. 2 a b Let A and B be the sets with identifiers a and $b (0 \le a, b < 2^N)$. Output the sum of the values of all sets X such that $A \subseteq X \subseteq B$. (Output 0 if there are no such sets X).

Help insect solve this modified subset sum problem!

Input Specification

The first line contains N and Q. $(1 \le N \le 18, 1 \le Q \le 10^5)$

The next line contains $V_0, V_1, V_2, \ldots, V_{2^N-1}$, the values of the 2^N subsets of $\{1, 2, \ldots, N\}$. $(1 \leq V_0, V_1, V_2, \ldots, V_{2^N-1} \leq 10^6)$

Each of the next Q lines contains a query in the format specified above.

Output Specification

Output the answer to each type 2 query on a separate line.

Constraints

Subtask 1 [20%]

 $1 \leq N \leq 10$

Subtask 2 [30%]

a=0 for all type 2 queries.

Subtask 3 [50%]

No additional constraints.

Sample Input

```
34
1 1 2 3 5 8 13 21
247
212
137
213
```

Sample Output

47 0 8

Explanation for Sample Output

In the first query, $a = 4 = 100_2$ and $b = 7 = 111_2$ correspond to sets $A = \{1\}$ and $B = \{1, 2, 3\}$. There are 4 possible sets X that satisfy $A \subseteq X \subseteq B$, which are $\{1\}, \{1,2\}, \{1,3\}, \{1,2,3\}$, and the sum of their values is 5 + 13 + 8 + 21 = 47.

In the second query, $a=1=001_2$ and $b=2=010_2$, so $A=\{3\}$ and $B=\{2\}$. No sets X satisfy $A\subseteq X\subseteq B$, so the answer is 0.

The third query changed the value of $\{2,3\}$ to 7, and in the fourth query, the possible sets X with $A = \{3\} \subseteq X \subseteq \{2,3\}$ are $X = \{3\}$ and $X = \{2,3\}$. The sum of their values is 1 + 7 = 8.