Young Mr. Potato is opening two new stores where he will, you guessed it, sell potatoes. Mr. Potato
gets his potatoes from farmers. Each farmer offers **exactly** potatoes per bag for a total price
of . Mr. Potato is going to buy all bags of potatoes from all farmers and place the bags in his two
stores.

Let’s denote the average potato price in the first store with , and the average potato price in the
second store with . The average potato price in a store is equal to the **ratio of the price and the
total number of potatoes** in the store. Taking into account logistical difficulties and the amount
of potatoes in the stores, he wants the product of the average prices of potatoes in the stores to be
minimal. In other words, he wants the product of and to be minimal.

After Mr. Potato settles on a division of bags in the stores, at least one store must have exactly
**bags**.

#### Input

The first line of input contains two integers and , the number of potato bags and the number of potato bags in at least one store.

The second line of input contains integers _{~i~} , separated by space.

The third line of input contains N integers , separated by space.

The sum of all _{~i~} will be .

#### Output

The first and only line of output must contain the minimal product of and from the task, rounded to three decimal places.

#### Scoring

In at least of examples, it will hold .

#### Sample Input 1

```
3 1
3 2 1
1 2 3
```

#### Sample Output 1

`0.556`

#### Sample Input 2

```
3 2
2 2 2
3 3 3
```

#### Sample Output 2

`2.250`

## Comments