There are
friends. Each friend has a remote control toy car and a garage
in which the car is stored. Every friend also has a pack of road parts used to
build the track for the cars. All the road parts in the
friend's pack have
the same length
.
Two different friends
and
may connect their garages with a road. To build
this road, they will both take a road part from their pack and join them,
obtaining a road of length
. Some pairs of friends are going to connect their garages in the described
way, so that everyone's garages are connected. In other words, starting from any garage it should be
possible to reach any other garage using the roads.
What is the minimum total road length needed to make a road network in which all the garages are
connected?
Input Specification
The first line contains a positive integer
, the number of friends.
The next line contains
positive integers
, the length of the road parts in the
friend's pack.
Output Specification
In the only line, print the minimum total road length needed to make all the garages connected.
Constraints
Subtask | Points | Constraints |
1 | 10 |  |
2 | 20 |  |
3 | 20 | No additional constraints. |
Sample Input 1
Copy
1
10
Sample Output 1
Copy
0
Explanation for Sample Output 1
Since there is only one friend, his garage is already connected to itself, so there is no need for building any
roads.
Sample Input 2
Copy
3
5 5 5
Sample Output 2
Copy
20
Sample Input 3
Copy
4
7 3 3 5
Sample Output 3
Copy
24
Explanation for Sample Output 3
If roads are built between friends
and
,
and
, and between
and
, everyone will be connected, and
the total cost will be
.
Comments